#### Presentation to 6<sup>th</sup> NZ Cycling Conference Napier, Friday 2 November 2007

### Cycle route network planning using GIS

Andrew G. Macbeth, BE, MEng, CPEng, FIPENZ (civil)

ViaStrada Ltd, Christchurch

andrew@viastrada.co.nz www.viastrada.co.nz

Co-authors: Tricia Allen (formerly ARTA) and Tony Barton (VicRoads, Melbourne)



# **Tricia Allen and Tony Barton**







## **Auckland**





## Melbourne





## Useful data for cycle planning in GIS

- General topographical features such as rivers, coastlines, railways and town or activity centres;
- Centrelines of roads and cycle route networks (both on-road and off-road);
- Municipal boundaries;
- Zone boundaries for conventional transport planning computer models;
- Census population and employment data, aggregated into transport planning zones;
- School rolls, aggregated to zone level; and
- Cycle crash locations for the last five years



## **Demographic density**

- Residential, employment and education totals from Census and school data
- Combine within transport planning model zones
- Display as persons per hectare using GIS
- Cycle network should service highest density areas first



## **Demographic density**



### Chch cycle to work Census data 2006

- Another useful spatial data set for planning cycle networks
- Density of trips (persons per ha) can be calculated at meshblock level and plotted
- Can help understanding of existing cycle use for journey to work in any city or district
- Chch data analysed by Canterbury DHB not just TLAs who are interested in this





## Crash data and cycle network

- Crash data and cycle network can be mapped
- Often cycle crash data align with proposed cycle routes
- Intention is to render cycle routes safe so that crashes diminish



### Auckland cycle network and crash data



#### **Auckland network models**

- Model 1: The sum of the parts
- Model 2: Regionally strategic parts of Model 1
- Model 3: Town centres
- Model 4: Town centres with regional links











## **Network comparisons**

|                                     | Model 1 | Model 2 | Model 3 | Model 4 |
|-------------------------------------|---------|---------|---------|---------|
| Demographic<br>Coverage             | 82%     | 47%     | 55%     | 74%     |
| Safety<br>(crash coverage)          | 74%     | 24%     | 60%     | 80%     |
| Raw Score<br>(out of 200)           | 155     | 71      | 115     | 154     |
| Cycle Network<br>Length (km)        | 854     | 375     | 1,192   | 1,420   |
| Final Score (normal-ised by length) | 0.18    | 0.19    | 0.10    | 0.11    |



## Model 2 network length, crashes

|                  | Total Road<br>Length | Model 2 Cycle<br>Network Length |                     | Total Cycle<br>Crashes | Model 2 Cycle<br>Crashes |                    |
|------------------|----------------------|---------------------------------|---------------------|------------------------|--------------------------|--------------------|
|                  | km                   | km                              | % of road<br>length | 2001-05                | No.                      | % of cycle crashes |
| Auckland City    | 1,354                | 75                              | 6%                  | 642                    | 51                       | 8%                 |
| Manukau City     | 1,300                | 143                             | 11%                 | 188                    | 83                       | 44%                |
| North Shore City | 804                  | 91                              | 11%                 | 173                    | 112                      | 65%                |
| Waitakere City   | 937                  | 66                              | 7%                  | 135                    | 26                       | 19%                |
| Total            | 4,395                | 375                             | 9%                  | 1138                   | 272                      | 24%                |



## Model 2 (old & new) network length

|                  | Total Road<br>Length | Original Model 2 |                  | New Model 2 |                  |
|------------------|----------------------|------------------|------------------|-------------|------------------|
|                  | km                   | km               | % of road length | km          | % of road length |
| Auckland City    | 1,354                | 75               | 6%               | 247         | 18%              |
| Manukau City     | 1,300                | 143              | 11%              | 169         | 13%              |
| North Shore City | 804                  | 91               | 11%              | 119         | 15%              |
| Waitakere City   | 937                  | 66               | 7%               | 131         | 14%              |
| Total            | 4,395                | 375              | 9%               | 666         | 15%              |



## **Network comparisons**

|                                     | Model 1 | Model 2 | Model 3 | Model 4 | New<br>Model 2 |
|-------------------------------------|---------|---------|---------|---------|----------------|
| Demographic<br>Coverage             | 82%     | 47%     | 55%     | 74%     | 82%            |
| Safety<br>(crash coverage)          | 74%     | 24%     | 60%     | 80%     | 92%            |
| Raw Score<br>(out of 200)           | 155     | 71      | 115     | 154     | 173            |
| Cycle Network<br>Length (km)        | 854     | 375     | 1,192   | 1,420   | 666            |
| Final Score (normal-ised by length) | 0.18    | 0.19    | 0.10    | 0.11    | 0.26           |



### **Existing and proposed routes**

- Buffers around cycle network show demographic coverage
- Can be superimposed on demographic densities to identify missing key links
- Visual inspection provides useful clues
- Has been trialled in Melbourne
- Further work needed to develop a tool to optimise the technique



### Existing and proposed routes, buffers



### Coverage of different buffers

- Assume people living within 500 m of cycle network have access to it
- 500 m = 2 minutes at 15 km/h
- Average time to access network = 1 min.
- Can calculate demographic coverage for a network for any given buffer
- Can compare coverage of different networks or existing and proposed networks



#### Coverage of 400 m, 800 m & 1.6 km buffers



#### Conclusions

- GIS helps analyse and visualise complex spatial data
- Improves objectivity of cycle route network planning
- Helps rationalise spending for most effective cycle network projects

